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1 (a) Let f(z) = —62% and g(z) = 2% + 22% — 2. Note that for |z| = 1,
[f(2)] = | = 62" = 6]z|* = 6 and |g(2)| < [2[° +2|2|* + |2 = 4 < |£(2)|

Therefore, by Rouche’s theorem, the number of zeros of f and f + ¢ inside |z| = 1 are the
same. Since 0 is a zero of order 4 of f(z) inside |z| = 1, the number of zeros of (f + g)(z) =

20 — 624 4223 — 2 inside |z| =1 is 4.

(b) Let f(2) = 25 and g(z) = —32% — 2 + 1. Note that for |z| = 2,
[f(2)] = |2°] = 32 and |g(2)| < 3|2 + |2] + 1 =27 <|f(2)]

Therefore, by Rouche’s theorem, the number of zeros of f and f + g inside |z| = 2 are the
same. Since 0 is a zero of order 5 of f(z) inside |z| = 2, the number of zeros of (f + g)(z) =

25 — 323 — 2+ 1 inside |2| = 1 is 5.
2 First of all, for any n € N, we consider the function f,(z) defined by f,(z) = z —1— 1. Let
g(z) = e~ *. Consider the positively oriented contour
C={Re" | 9 € [-5, S} U{iR(=) | t € [-1,1]}
For any R > 4, along the contour C, we have
1 1 —x 0
|f(z)|:|z—1—ﬁ|21+ﬁ>1and lg(z)| =™ <e” =1

As a result, by Rouche’s theorem, the number of zeros of f,, and f,, + g inside C' are the same.
Since 1 + % is the only zero of f(z) and its multiplicity is 1, the number of zeros of the function

(fat9)(z)=2—1—2L14¢e % inside Cis 1.

Now we consider the function f(z) = z — 1. Note that for any z € C,

1(f(2) + 9(2)) = (fu(2) + 9(2))] = %

Therefore, the functions {(f,+9)(z) }nen converge uniformly to the function (f+g¢)(z). As a result,
by Hurwitz’s theorem, for any R > 4, there exists N € N such that (f, +¢)(z) and (f + g)(z) have
the same number of zeros inside C'. This implies that (f +g)(z) = z — 14 e~ * has exactly one root

in the right half plane.

Remark: Since this question is quite tricky, you will not lose any mark even if your

answer is incorrect.
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This shows that composition of two linear fractional transformations is a linear fractional transfor-

computation, one can show that f(g(z)) = , where

mation.

4 Note that the equation of straight line and circle can be written in the form
AzZ+Bz+Bz+C =0,

1
where A,C € R, B € C and AC < |B|?. Under the transformation w = —, we can see that the
z
equation becomes
11 =1 1
A——+B—+B=+C =0,
ww w w
which is equivalent to
Cww + Bw+ Bw+ A =0.

1
Therefore, the transformation w = — maps straight line and circle to straight line and circle.
z

5 Let F(2) = (2, f(21), f(22), (23)-
formations, the mapping F(f(z)) = (f(z), f(21), f(22), f(23)) is a linear fractional transforma-
(2

F(2) — F(2) Fes) = £ ()
tion. Furthermore, F(f(z)) = F2) = f(z5) f(z2) = f(z1)

exists a unique linear transformation which maps 21, 29,23 to 0,1,00, we have (z,z21,29,23) =

(f(Z), f(zl)’ f(ZQ)v f(Zg))

Note that since f(z) and F(z) are linear fractional trans-

maps 21, 22,23 to 0,1,00. Since there



